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Finding the Optimal Number of Persons (N) and Time Points (T) for Maximal
Power in Dynamic Longitudinal Models Given a Fixed Budget

Martin Hechta , Julia-Kim Waltherb , Manuel Arnoldc and Steffen Zitzmannb

aHelmut Schmidt University Hamburg; bUniversity of T€ubingen; cHumboldt-Universit€at zu Berlin

ABSTRACT
Planning longitudinal studies can be challenging as various design decisions need to be made. Often,
researchers are in search for the optimal design that maximizes statistical power to test certain param-
eters of the employed model. We provide a user-friendly Shiny app OptDynMo available at https://
shiny.psychologie.hu-berlin.de/optdynmo that helps to find the optimal number of persons (N) and the
optimal number of time points (T) for which the power of the likelihood ratio test (LRT) for a model
parameter is maximal given a fixed budget for conducting the study. The total cost of the study is
computed from two components: the cost to include one person in the study and the cost for measur-
ing one person at one time point. Currently supported models are the cross-lagged panel model
(CLPM), factor CLPM, random intercepts cross-lagged panel model (RI-CLPM), stable trait autoregressive
trait and state model (STARTS), latent curve model with structured residuals (LCM-SR), autoregressive
latent trajectory model (ALT), and the latent change score model (LCS).
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Longitudinal modeling has been a core technique in psycho-
logical and social science research for a long time. More
recently, dynamic longitudinal models (e.g., Voelkle et al.,
2018) became increasingly prominent. We refer to longitu-
dinal models as dynamic when they include autoregressive
effects (in the univariate case) or autoregressive and cross-
lagged effects (in the multivariate case). Popular dynamic
longitudinal models are, for instance, the cross-lagged panel
model (CLPM; e.g., Selig & Little, 2012), which has been
labeled the “workhorse in developmental psychology for
decades” (Berry & Willoughby, 2017), and the random
intercepts cross-lagged panel model (RI-CLPM; Hamaker
et al., 2015) whose popularity is mirrored by over 1700 cita-
tions (in Google Scholar, 17 November 2022). Recently, a
unified framework that incorporates these and other
dynamic longitudinal models has been proposed by Usami
et al. (2019).

Researchers who plan to apply dynamic longitudinal
models are confronted with various design decisions—one
of the most obvious being how many persons should be
sampled and how often these persons should be assessed.
Such a decision usually needs to be made with respect to
some criterion (or criteria). Oftentimes, the statistical power
to detect an effect (i.e., to test a model parameter against
zero or some other value) is of core interest, for instance,
because funding agencies require power calculations for
grant proposals and because underpowered studies can lead

to biased conclusions and are a waste of the scarce resource
participants, as argued by Crutzen and Peters (2017).1

Hence, researchers might be interested in choosing the
number of persons (N) and the number of time points (T)
in such a way that the statistical power for model parame-
ters of interest (target parameters) is maximal under the
constraint of a fixed budget.

How could researchers achieve to identify this optimal
N–T–combination for maximal power? One standard
approach for power calculation is Monte Carlo simulation
(e.g., Muth�en & Muth�en, 2002). Here, the researcher needs
to run the model on thousands of generated data sets and
record how often the false null hypothesis is rejected. This
yields power estimates for model parameters for one specific
combination of N and T values. Finding the optimal N–T–
combination then requires researchers to consider large and
fine-grained ranges of possible N and T values, making
this simulative search computationally very intensive. Also,
setting up simulations requires some level of programming
skills.

Instead of conducting the simulations oneself, researchers
could rely on published results from studies that investi-
gated how different design parameters affect power. In fact,
many such studies exist, for example, by Fan (2003),
Hertzog et al. (2006, 2008), von Oertzen et al. (2010), and
Wu et al. (2016), to name just a few. However, researchers
then must be lucky that results and recommendations for
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exactly their desired model and model parameter(s) are
available. For growth models, quite some insights are avail-
able that can help with designing longitudinal studies (e.g.,
Brandmaier et al. (2015, 2020); Muth�en & Curran, 1997;
Fan, 2003; Hertzog et al., 2006, Hertzog et al., 2008; von
Oertzen, 2010; von Oertzen et al., 2010; von Oertzen &
Brandmaier, 2013; Wu et al., 2016). Yet, for dynamic mod-
els, advice seems to be much sparser.

Purpose and Scope

In this work, we propose an approach and algorithm to cal-
culate the optimal N and T to maximize statistical power for
parameters from a popular set of dynamic models. We pro-
grammed the Shiny app OptDynMo with which researchers
can optimize their longitudinal study designs easily and fast.

In a nutshell, our approach is based on Satorra and Saris’
(1985) closed-form power calculations for the likelihood
ratio test (LRT) and a numerical optimization procedure
which searches for the N and T that maximize power for
the desired target parameters given a fixed budget. The
numerical optimization is performed with the R package
rgenoud (Mebane & Sekhon, 2011).

The article is organized into the following sections. First,
we summarize previous work on power calculation and
design optimization. Second, we describe our approach and
give technical details on its implementation. Third, we give
a tutorial-like introduction on how to use our Shiny app
which is the central product of our presented work. Fourth,
we discuss limitations of our app and sketch potential future
extensions.

Previous Research

Searching for optimal designs has a decades-long tradition
in the social sciences with an extensive body of literature.
The ingredients for optimal design research often are (1)
criteria that are the target of optimization and methods to
compute these criteria, (2) the design parameters and con-
straints, and (3) algorithms and methods to conduct the
search within the design parameter space.

Optimization Criteria
Statistical power is often deemed one of the important met-
rics for the quality of a study, because it provides the prob-
ability of a significant result (e.g., von Oertzen, 2010; von
Oertzen & Brandmaier, 2013), or as Jak et al. (2021) put it:
“When statistical power is too low to detect a meaningful
effect, a study would essentially waste data on type II
errors.” (p. 1385). Power thus has been a desired target for
optimization (or more precisely, maximization); for
example, Allison et al. (1997) address the question: “Given a
fixed amount of money, what is the maximum power that I
can achieve?” (p. 20).

If power is the target of optimization, obviously a
method to compute the power is needed. This task could be
done via Monte Carlo simulations (e.g., Muth�en & Muth�en,

2002; Wang & Rhemtulla, 2021) or with calculation formu-
las. Whereas Monte Carlo simulations are very flexible, they
might become computationally very demanding and thus
very time-consuming. Therefore, their applicability for
design optimizations, where power needs to be calculated
many times, is limited. Formulas for power calculations are
usually computationally much less demanding, but often
have a limited scope and/or precision. For example, for a
special dynamic longitudinal model, the continuous-time
VAR(1) model, Hecht and Zitzmann (2021) proposed such
a formula to approximate power for peak cross-lagged
effects which they derived from heavy simulations in com-
bination with machine-learning techniques. However, it is
oftentimes better to employ analytically derived formulas.
For a variety of simple tests and models, such power formu-
las are available and packed into user-friendly tools such as
G�Power (Faul et al., 2007) or the R package pwr
(Champely, 2020). For multi-level models with AR(1)
within-person errors, Lafit et al. (2023) derived analytical
formulas for statistical power. For structural equation mod-
els (SEMs), Satorra and Saris (1985) proposed an approach
for power calculations for the LRT and MacCallum,
Browne, and Sugawara (1996) for power calculations based
on the root mean square error of approximation (RMSEA).
Both methods were implemented into the user-friendly
Shiny app power4SEM by Jak et al. (2021). Another soft-
ware application for power calculations is Jrule (Oberski,
2009), which reads in Mplus output with modification indi-
ces and expected parameter change information and pro-
vides a user interface to taking into account the power of
the score test as described by Saris, Satorra, and van der
Veld (2009). Research and tools aimed at power calculations
for longitudinal modeling for example consist of the R pack-
age and Shiny app longpower developed by Iddi and
Donohue (2022), the Shiny apps PowerAnalysisIL and
PowerLAPIM created by Lafit et al. (2021, 2022), the works
of Liu and Liang (1997), Lu et al. (2008), Moerbeek (2022),
Basaga~na and Spiegelman (2010), Basaga~na et al. (2011),
and Bolger et al. (2012).

Design Parameters and Constraints for the Optimization
After the target of optimization has been defined (e.g.,
power), the design parameters that can vary and their
admissible range need to be determined. Together with
optional further design constraints (e.g., imposed by a cost
function), this defines the search space for the optimization.
Many authors have proposed cost functions (e.g., Allison,
1995; Allison, 1997; Tekle et al., 2011; van Breukelen, 2013;
Zitzmann et al., 2022). For a two-level context, van
Breukelen (2013) and Zitzmann et al. (2022) suggested to
calculate the total study cost as a function of the numbers
of level-2 and level-1 units and the costs that are associated
with including and assessing these level-2 and level-1 units
in the study. With such a cost function, Zitzmann et al.
(2022) reduced the search space from two to one dimension,
because the sample size of one level can be expressed as a
function of the sample size of the other level.
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Besides sample size, many other design parameters could
be used for the optimization. For example, Adolf et al.
(2021) searched for the optimal sampling rates for continu-
ous-time first-order autoregressive and vector autoregressive
models,2 Wu et al. (2016) and Brandmaier et al. (2020)
searched for optimal planned missingness patterns for
growth-curve modeling, Tekle et al. (2011) included the
number of cohorts (besides number of measurement occa-
sions) in their optimization of designs for linear mixed-
effect models, Schlesselman (1973) optimized the frequency
of measurement and study duration, and Raudenbush and
Liu (2001) showed that power depends on a standardized
effect size, the sample size, and a person-specific reliability
coefficient which in turn depends on study duration and
frequency of observation.

Optimization Methods
After the design parameters for the optimization have been
defined, some method is needed to conduct the search for
optimal values of these design parameters. One frequently
employed option is to use numerical optimization routines
and algorithms. For example, Adolf et al. (2021) and
Zitzmann et al. (2022) both used R’s general-purpose opti-
mizer optim() (R Core Team, 2022). Instead of numerical
optimization, von Oertzen (2010) approached the optimiza-
tion task of cost reduction given a fixed target power by
employing power-equivalent model modification operations,
an approach that has been picked up in a series of articles
(von Oertzen & Brandmaier, 2013; Brandmaier et al., 2015;
Brandmaier et al., 2020) and incorporated into the tool
Longitudinal Interactive Front End Study Planner
(LIFESPAN; Brandmaier et al., 2015).

To summarize, researchers who plan a longitudinal study
and want to optimize the design, need to think about the
target criteria, the design parameters and constraints for the
optimization, and the method of optimization. In previous
research, target criteria were often study cost or power (pri-
marily for the class of growth models), the design parame-
ters often were the number of persons (N), the number of
time points (T), study duration, or planned missingness pat-
terns, and methods for optimization were numerical opti-
mization algorithms or special model modification rules.

In principal, researchers might not have to bother with
implementing and programming the design optimization
and power calculation routines3 themselves if tools are avail-
able, and they are (e.g., the excellent tools and software
packages LIFESPAN, Brandmaier et al., 2015; G�Power,
Faul et al., 2007; power4SEM, Jak et al., 2021; OD,
Raudenbush et al., 2011; Ml-des, Cools et al., 2008; Jrule,
Oberski, 2009; and the Shiny apps by Zitzmann et al., 2022,
Hecht & Zitzmann, 2021, Lafit et al., 2021, 2022, and Iddi &
Donohue, 2022). However, for finding the optimal N and T

that maximize the power for testing parameters from
dynamic models, no such tool is—to the best of our know-
ledge—available.

Procedure for Finding the Optimal N and T for
Maximal Power

The goal of our optimization procedure is to find the num-
ber of persons (N) and the number of time points (T) for
which the statistical power of tests for one or more model
parameters is maximal given a fixed budget. In a nutshell,
our procedure uses the genoud optimizer to search over T
for maximal power with N being determined via the cost
function. Technical details are given in the next subsections.
Our optimization procedure is the core of our user-friendly
Shiny app OptDynMo, which is described further below.

Cost Function

In line with van Breukelen (2013; see also Zitzmann et al.,
2022), we assume that the total cost for a study (and thus
the budget B that is needed) is the sum of the cost for one
person (C2) times the number of persons (N) and the cost
for one measurement (C1) times the number of time points
(T) times the number of persons:

B ¼ C2N þ C1TN: (1)

The required number of persons N can therefore be cal-
culated as:

N ¼ B
C2 þ C1T

: (2)

As N is a function of T, it is sufficient to use T as the
parameter over which the optimization is performed.

Objective Function

The objective function gets T as input and then computes N
via Eq. 2. After that, the power for each model parameter is
calculated. These power calculations are conducted with
Satorra and Saris’ (1985) SEM-LRT approach for a signifi-
cance level a and the null hypothesis that the parameter is
zero in the population. We chose Satorra and Saris’
approach primarily because it is a computationally very
efficient approximation, allowing for rapid optimizations.
Moreover, Satorra and Saris report high accuracy, espe-
cially when the value of the tested parameter is close to
the value under the null hypothesis (which is zero in our
approach). When optimizing power for multiple target
parameters, our procedure assumes a separate LRT for
each target parameter at the specified significance level a.
If users wish to correct for multiple testing, they will need
to do so themselves.

Power Calculation

In the following, we briefly summarize the method to
approximate the power of the LRT put forward by Satorra
and Saris (1985). Let

2Note that Adolf et al. (2021) derived a closed-form expression of the optimal
sampling rate for a continuous-time AR(1) process, whereas numerical
optimization was used for bivariate VAR(1) processes.
3Note that closed-form solutions may be available or derived for both tasks of
determining power and searching for an optimal design, or alternatively,
simulative/numerical procedures can be employed.
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FðS,RðhÞÞ ¼ tr SRðhÞ�1
� �

� ln SRðhÞ�1�� ��� �
� p (3)

be the maximum likelihood fitting function used to fit SEMs
on multivariate normally distributed data (e.g., Bollen, 1989),
where p denotes the number of observed variables, S is the
sample covariance matrix of the observed variables, RðhÞ is
the corresponding model-implied covariance matrix, and h is a
vector with q model parameters. Minimizing F yields the max-

imum likelihood estimates ĥ of the parameters h:
By multiplying the fitting function by the sample size

and evaluating it at the parameter estimates, we obtain the
test statistic TS. When the data are normally distributed and
the model is correctly specified, large sample theory (e.g.,
Ferguson, 1996; Rao, 1973) tells us that TS converges to a
central v2-distribution with df ¼ pðpþ 1Þ=2� q degrees of
freedom. More formally, we write:

N � FðS,RðĥÞÞ ¼ TS!d v2df : (4)

Now, we consider the hypotheses H0 and H1 that imply
two different models with corresponding parameter vectors
hH0 and hH1 : In our Shiny app, the model under H1 is defined
by the user who specifies values for hH1 : The model under H0

is obtained by setting one parameter in hH1 to zero, yielding
hH0 : Of course, the parameter set to zero is the one for which
we want to determine the power. The LRT is one of the most
commonly used procedures to compare the two models. It
rejects the null hypothesis when the test statistic

LRT ¼ N � FðS,RðĥH0ÞÞ � FðS,RðĥH1ÞÞ
h i

(5)

exceeds a certain critical value ca: Under the H0, the test
statistic LRT follows asymptotically a central v2-distribution
with r degrees of freedom, where r denotes the difference in
degrees of freedom between the models under H1 and H0.
Note that r is always 1 in our implementation because only
a single parameter is tested at a time.

Satorra and Saris (1985) suggest the following analytical
procedure to approximate the power of the LRT. They note
that in situations, where the model under the H0 is fitted on
data sampled when H1 is true, the test statistic does not follow
the standard v2-distribution anymore. Instead, the test statistic

~TS ¼ N � FðSH1 ,RðĥH0ÞÞ (6)

lies more to the right, is more spread out, and follows
asymptotically a non-central v2-distribution with df degrees
of freedom and non-centrality parameter k. Satorra and
Saris (1985) note that we can approximate the power of the
LRT by computing how much of the asymptotic distribution
of ~TS (that is, the non-central v2-distribution) lies on the
right side of a critical value ca obtained from the asymptotic
distribution of TS (the central v2-distribution). Thus, the
asymptotic power of this test is

Pð ~TS > cajH1Þ ¼ 1� Pð ~TS � cajH1Þ ¼ 1� Fv21, kðcaÞ, (7)

where Fv21, k is the cumulative probability function of the

v2-distribution with df¼ 1 degree of freedom and non-
centrality parameter k.

All that remains to be done is to compute the quanti-
ties ca and k. The critical value ca can be straightfor-
wardly determined by locating the 1� a quantile of the
central v2-distribution with 1 degree of freedom.
Computing the non-centrality parameter is more challeng-
ing. However, Satorra and Saris (1985) propose the fol-
lowing simple approximation of the non-centrality
parameter that involves fitting the model under the H0

(yielding RðĥH0Þ) on the population covariance matrix
under the H1 (that is, RH1 ):

k ¼ N � FðRH1 ,RðĥH0ÞÞ: (8)

Although the abovementioned procedure provides high
accuracy (see Satorra & Saris, 1985), it requires fitting the
model under the H0. As a result, calculating the optimal N
and T becomes computationally intensive, especially if the
search space is large and various possible values for N and
T need to be considered. To solve this issue and to provide
a responsive user experience, we implemented a computa-
tionally less intense two-step procedure that uses a faster
approximation of the non-centrality parameter k. Instead of
fitting the model under the H0 on the population covariance
matrix under the H1, we calculate the difference between
both population covariance matrices:

~k ¼ N � FðRH1 ,RH0Þ: (9)

This approximation involves no model estimation
because the population covariance matrices RH1 and RH0

can be straightforwardly computed from the user input to

our Shiny app. Although the resulting ~k is larger than k,
both quantities usually lead to the same optimal N and T.
After the optimal N and T have been identified, we re-
calculate the power using Satorra and Saris’ (1985) method
outlined above.

Models

Our procedure is applicable to a wide range of SEMs, in
principle for all models for which Satorra and Saris’ (1985)
SEM-LRT approach can provide power statistics. In the cur-
rent work, we focus on dynamic longitudinal models that
are included in Usami et al.’s (2019) “unified framework of
longitudinal models to examine reciprocal relations,” which
are the CLPM (e.g., Selig & Little, 2012), the factor CLPM
(Usami et al., 2019; also known as the autoregressive cross-
lagged factor model, Usami et al., 2015, and as the crossed-
lagged regression of factors, McArdle, 2009), the RI-CLPM
(Hamaker et al., 2015), the stable trait autoregressive trait
and state model (STARTS; Kenny & Zautra, 2001; also
known as the trait-state-error [TSE] model, Kenny &
Zautra, 1995), the latent curve model with structured resid-
uals (LCM-SR; Curran et al., 2014), the autoregressive latent
trajectory model (ALT; Bollen & Curran, 2004; Curran &
Bollen, 2001), and the latent change score model (LCS;
Hamagami & McArdle, 2001; McArdle & Hamagami, 2001).
These models are depicted in Figures B1–B7 in the
Appendix B.
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Note that all of these models are discrete-time models
that typically presume a single, constant time interval
between measurement occasions. This constraint is removed
in the more versatile continuous-time models (see, e.g.,
Voelkle et al., 2018, for the distinction between discrete-
time and continuous-time models), which allow for the
investigation of the unfolding and dissipation of effects
depending on the time interval (e.g., Hecht & Zitzmann,
2021).

A central assumption underlying our implementations of
these models is stationarity in the sense that all model
parameters (for T � 2) do not change over time. In particu-
lar, these models are covariance stationary and mean station-
ary because they assume that the process (co)variances and
means remain constant across all time points (see, e.g.,
Hamilton, 1994, Section 3.1; Brockwell & Davis, 2002,
Section 1.4; Enders, 2015, Section 3; L€utkepohl, 2005,
Section 2.1.3; Shumway & Stoffer, 2015, Section 1.5).
Assuming stationarity, the parameters of the first time point
must adhere to this assumption, meaning that the (co)va-
riances at the first time point should be constrained to the
process (co)variances, and the means at the first time point
should be constrained to the process means.

Optimizer

To formulate the dynamic longitudinal models within the
SEM framework and thus to be able to use Satorra and
Saris’ (1985) SEM-LRT approach for power calculations, an
integer-valued number of time points T is needed, because
the time points (which are our level-1 units) are represented
as variables (see, e.g., Mehta & Neale, 2005, and Curran,
2003, who discuss the modeling of multi-level models within
the SEM framework). Hence, an integer optimizer is needed
for our optimization task. We chose the genoud optimizer
(genetic optimization using derivatives) implemented in the
R package rgenoud (Mebane & Sekhon, 2011) as it provides
integer optimization functionality in R, has an intuitive
usability, and can optimize multiple criteria at once; this set
of requirements quite drastically limited the number of pos-
sible optimizers to choose from. In Appendix A we describe
how we tuned the optimizer for our optimization task.

Code Availability

Our code is open-source and available at https://github.com/
martinhecht/optimalCrossLagged.

Shiny App OptDynMo (Version 0.2.0, June 2023)

The graphical user interface of our Shiny app OptDynMo
(available at https://shiny.psychologie.hu-berlin.de/optdynmo)
is presented in Figure 1. The app consists of three input pan-
els, an output panel, a tech panel, and references, which are
all described next. For user convenience, we enriched the app
with helpful advice and descriptions available as mouse-over
texts triggered when the user moves the mouse over the
question mark symbols.

Study Design

In the input field Budget, the available study budget in arbi-
trary monetary units can be specified. The a-Level input
field serves for defining the level of significance for the
power calculations. Below these two input fields are two
frames with input fields specific to persons and time points.
The cost for including one person in the study and the cost
for one time point (i.e., one measurement of one person)
can be specified in the field Costs. The minimal and max-
imal number of persons and time points can be set in the
fields Min and Max. The default minimum number of time
points depend on the chosen model (see below). As the
range of number of persons and number of time points is
interdependent due to the cost function (see subsection
“Cost Function” above), our procedure performs adjust-
ments to these ranges. The adjusted ranges used in the opti-
mization are printed in gray on the right-hand side of the
input boxes.

Model Characteristics

In the input field Model Class, the user can choose between
various models: CLPM (default), factor CLPM, RI-CLPM,
STARTS, LCM-SR, ALT, and LCS. These models are repre-
sented in Figures B1–B7 in the Appendix B and also in the app
(Panel B). Please be aware that the figures in the app are static
and do not reflect the selected parameter values. When one of
the models is chosen, the app will adjust the minimal number
of time points for stationary model identification as provided
by Usami et al. (2019, table 1 on p. 639). In the input text field
Process Names, the names of the processes can be specified by
comma-separating them (default: “proc1, proc2”). The number
of provided names determines the number of processes in the
model, which is displayed in a gray box.

Model Parameters

In the panel Model Parameters, the anticipated values4 need to
be specified for all model parameters. The displayed parameter
input fields depend on the model class. The autoregressive and
cross-lagged parameters and dynamic residual variance/covar-
iance parameters are always displayed, as these parameter types
are part of all supported models. Also, the user can choose the
target parameters for which the power calculation is desired by
using the provided dropdown menus. For multivariate models
(number of processes � 2), the default target parameters are
all cross-lagged effects, whereas for univariate models (1 pro-
cess), the default target parameter is the autoregressive effect.
In the mouse-over texts, information and references on param-
eter interpretation is provided.

4Assumed population values for the input parameters might, for instance, be
obtained from previous studies or experts in the specific research area (also
see, for instance, Harrall et al., 2023, for recommendations on how to extract
relevant inputs from literature and how to conduct and report power
analyses). As our app has a short run time, users can easily explore the
sensitivity of the results by inputting various assumed population values if
there is uncertainty about them.
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Results

Our app is designed for rapid user experience.
Manipulating one input field will automatically trigger the
calculations, and results are immediately (usually within
less than a second) displayed in the Results section. The

results consist of the optimal number of persons (N) and
the optimal number of time points (T) for which the
power of the LRTs of the target parameters is maximal.
These power values for all target parameters are displayed
as well.

Figure 1. User interface of Shiny app OptDynMo (available at https://shiny.psychologie.hu-berlin.de/optdynmo).
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Technical Details

In the technical details panel, the run time of the optimization
process (in seconds) and the number of optimizer iterations is
given. For future improvements of the app and the optimiza-
tion procedure, the app saves all in- and output. Users can
stop this by unticking the checkbox labeled “Log Results.” The
elapsed time (in seconds) for the saving process (log run
time), the log identifier (an auto-increased integer), and
whether the saving process was successful (log status) is
displayed.

The precision5 of the optimizer can be adjusted via a
slider ranging from 16 (default) to 1,000. In many cases, the
default precision should be sufficient to provide stable
results. However, for some parameter constellations, the
optimization might become tough for the optimizer and
potentially untrustworthy results may occur. Then the warn-
ing message “Optimizer results might be of low accuracy.
Try to increase the precision of the optimizer (see
“Technical details” section) until this message vanishes.” is
displayed. The user should then adhere to this suggestion
and increase the optimizer precision which, disadvanta-
geously, also leads to longer run times. If the maximal preci-
sion (1,000) is selected and results are still identified as
potentially unstable, the app issues the warning “Optimizer
results might be of low accuracy. Use results with caution!”.

References

References which are cited in the mouse-over texts are listed.

How to Cite

There, users can find information on citing the app and this
accompanying article.

Discussion

The purpose of this work was to provide a user-friendly
tool for finding the optimal number of persons (N) and
number of time points (T) given a fixed study budget that
maximizes the power of LRTs for model parameters from
the dynamic longitudinal models CLPM, factor CLPM, RI-
CLPM, STARTS, LCM-SR, ALT, and LCS. Our tool and
optimization procedure shares the fate with all other tools
and procedures of being limited in certain aspects. In the
following, we discuss these limitations which nevertheless
can lay the ground for future extensions of our tool and
procedure.

The current version of our tool is limited to the specific
dynamic models that Usami et al. (2019) incorporated into
their unified framework of longitudinal models to examine
reciprocal relations. Although we think that highly popular
models are covered, our software could include more

models in future versions. Basically, all models that can be
specified in the SEM framework are potential candidates.
Also, it might be possible to provide a general input inter-
face for specifying any kind of SEM. We had actually started
our project with this idea in mind, but then decided to first
just provide some specific popular models in an attempt of
not overburdening the user. Also an interesting extension to
the models discussed by Usami et al. (2019) would be to
incorporate multi-group functionality, similar to what
Mulder and Hamaker (2021) have done for the RI-CLPM.

Another promising extension to our approach is support
for longitudinal models with multiple indicators per latent
factor. Following Usami et al. (2019), the measurement part
of the models comprise of single indicators. In foresight, we
have already prepared our code in such a way that it is eas-
ily extensible to multiple indicator measurement models.
This would open up the possibility of pursuing interesting
design questions like “If we added (or subtracted) measure-
ment occasions, in how far could we afford to use a less
reliable (or would we need a more reliable) measurement
instrument?” (Brandmaier et al., 2015, p. 6).

In our implementation of Usami et al.’s (2019) models,
we assumed stationarity and constrained the parameters of
the first time point accordingly. Although we think that this
is one of the most common and widely used modeling
options, in future versions of our app we could lift the sta-
tionarity constraints for the parameters of the first time
point and allow for their free estimation and thus for the
inclusion in power calculations.

Our approach relies on Satorra and Saris’ (1985) method
for power calculations of the LRT. Satorra and Saris’ method
suits our app well because it provides a computationally effi-
cient and accurate power approximation. Nevertheless, the
method is based on asymptotic theory and thus may be less
precise in estimating the power in small samples. One alterna-
tive would be the use of Monte Carlo simulations, which may
perform better in small samples. However, Monte Carlo simu-
lations would drastically increase the run time of our app and
would require more computational resources than we can cur-
rently provide. Moreover, especially in very small samples, esti-
mation problems and non-convergence may bias the simulated
power, which would not be surprising since many longitudinal
models, such as the STARTS, are hard to estimate (see Cole,
Martin, & Steiger, 2005; Luhmann et al., 2011, Kenny &
Zautra, 2001).

Other optimization criteria besides the maximization of
power might be interesting for study designers. For instance,
designs could be wanted that minimize study costs for a
desired power, thus answering questions like “Given that I
need a fixed degree of power, what is the design that costs
the least amount of money?” (Allison et al., 1997, p. 20).
Such an objective was, for example, in the focus of the
research by von Oertzen et al., 2010, von Oertzen &
Brandmaier, 2013, Brandmaier et al. (2015, 2020), and also
Zitzmann et al. (2022).

We searched over number of time points (T) for max-
imal power while determining the number of persons (N)
via a cost function. Other design parameters and cost

5We use the term “precision” as a user-friendly transcription of what the
argument pop.size of the genoud optimizer adjusts, see Mebane and Sekhon
(2011) and Appendix A.
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functions might be interesting and suitable and have been
used in other research. We used a simple cost function
adopted from van Breukelen (2013) and Zitzmann et al.
(2022), which is in principle also similar to Tekle et al.’s
(2011) cost function. These authors assume two cost com-
ponents, one for including one person in the study and
one for measuring a person at one time point. In addition,
Raudenbush and Liu (2001) suggest to consider duration,
frequency, and sample size in cost functions, and caution
against potential participant attrition which might be asso-
ciated with prolonged study duration. Attrition is also a
central theme in the work of Brandmaier et al. (2020) on
optimal planned missing data designs for linear latent
growth curve models. Adding the capability to include
planned missingness to our app would be a valuable and
useful feature. However, this complex task requires further
research and significant effort and is therefore a long-term
goal for our team.

It is also interesting to consider the optimal sampling
scheme or, in other words, the optimal length of time
intervals between measurement occasions and whether
and in case how much within- and/or between-person
variation in interval lengths is beneficial. As discrete-time
models (such as the models employed in the present
work) might not be feasible for neat integration of data
from flexible longitudinal designs with intra- and inter-
individually varying time intervals, another class of mod-
els, that is, continuous-time models (e.g., Hecht et al.,
2019; Hecht & Voelkle, 2021; Hecht & Zitzmann, 2020,
2021; Lohmann et al., 2022; Ryan et al., 2018; Voelkle
et al., 2012), might prove to be beneficial. Research that
started exploring optimal designs for continuous-time
models is for, example, the work of Adolf et al. (2021) and
Voelkle and Oud (2013).

Our app currently outputs one optimized solution based
on the inputted design and model parameters. However, it
would be valuable to investigate how sensitive the solutions
are to slight modifications of the input parameters. To that
end, we made a significant effort to minimize run time so
that users can experiment with the input parameters and
explore the sensitivity of the results. Further, visualizing
power for values of N and T slightly around their optimal
values in a power landscape would be a nice potential fea-
ture for future updates.

One issue that researchers may face when performing
power calculations is the uncertainty surrounding popula-
tion values. While suggestions have been made in the lit-
erature, such as those by Taylor and Muller (1995, 1996)
and Anderson et al. (2017), on how to account for this
uncertainty, our app does not currently implement these
methods. In the meantime, users can conduct sensitivity
analyses by varying input values. For instance, Harrall
et al. (2023) suggest considering values that are double or
half the original hypothesized value and examining their
effects on power.

Our Shiny app OptDynMo is part of a series of excellent
tools and software packages (as mentioned above), such as
Jak et al.’s (2021) Shiny app power4SEM, which is also

based on Satorra and Saris’ (1985) closed-form power calcu-
lations and is highly adaptable to different models.
OptDynMo goes beyond calculating power for a user-speci-
fied model by searching for optimal design parameters (N
and T) to maximize power under a fixed budget. Although
our approach is generally applicable to all SEMs that can be
handled by power4SEM, we decided to provide an easy-to-
use interface for optimizing designs for popular longitudinal
models. Extending our app to include power4SEM’s highly
adaptable SEM input in lavaan syntax would be an intrigu-
ing option.

Optimizing longitudinal study designs is a complex
endeavor, but worth the effort. We hope that researchers
find our tool helpful for planning their longitudinal studies.
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Appendix A. Tuning the Optimizer

The genoud optimizer uses an evolutionary algorithm with the most
important tuning option being the so-called population size (see
Mebane & Sekhon, 2011, for explanations of how the optimizer works
and what parameters can be modified). Increasing the population size
increases the reliability of the solution, but also lengthens computa-
tional time—hence, trade-offs must be made. Unfortunately, as the
authors of the optimizer note, “… because of the stochastic nature of
the algorithm, it is impossible to generally answer the question of what
is the best population size to use” (Mebane & Sekhon, 2011, p. 7).
Therefore, we conducted a small simulation where we varied the popu-
lation size (2, 4, 6, 10, 16, 20, 26, 30, 36, 40, 46, 50, 100). For each
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population size we conducted 1,000 optimization runs for a bivariate
CLPM (the true parameter values are provided in the code of function
generate.model.example.2() in our code repository on GitHub, https://
github.com/martinhecht/optimalCrossLagged); default values for the
other options of the optimizer (rgenoud version 5.9-0.3) were used,

except for wait.generations and boundary.enforcement which were set
to 1 and 2, respectively). The goal was to identify the smallest
population size for which the solution is stable, that is, when the solu-
tion (i.e., the optimal T) does not vary over optimization runs. This
was the case for all investigated population sizes � 16:

Figure B1. Cross-lagged panel model (CLPM).
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Figure B2. Factor cross-lagged panel model (fCLPM).
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Figure B3. Random intercepts cross-lagged panel model (RI-CLPM).
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Figure B4. Stable trait autoregressive trait and state model (STARTS).
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Figure B5. Latent curve model with structured residuals (LCM-SR).
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Figure B6. Autoregressive latent trajectory model (ALT).
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Appendix B. Model Diagrams

Figure B7. Latent change score model (LCS).
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